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Abstract. In this paper, we provide a simple pedagogical proof of the
existence of covariant renormalizations in Euclidean perturbative quan-
tum field theory on closed Riemannian manifolds, following the Epstein–
Glaser philosophy. We rely on a local method that allows us to extend
a distribution defined on some open set Ω ⊆ M to the whole manifold
M .

Mathematics Subject Classification (2010). 81T20; 46T30; 42B35.

Keywords. Renormalization; distributions.

1. Introduction

Renormalization in the Epstein–Glaser sense has played a fundamental role
in the construction of perturbative quantum field theories on curved space
times. Our aim in this paper is to present a pedagogical and new proof of
the existence of covariant renormalization of Euclidean perturbative quan-
tum field theories (pQFT) on closed Riemannian manifolds that is simple,
and based on extension of distributions. The advantage of the Riemannian
setting is that the propagators are only singular on the diagonals hence we
do not need involved methods of microlocal analysis to construct the renor-
malization. The structure of the article is first to describe a class of distribu-
tions having some moderate growth properties that generalize the example
x−1Θ(x) discussed below and contain the singular Feynman amplitudes en-
countered in quantum field theory. Then, we construct some analytic tools
which allow to extend these distributions as in the above example. We finally
use these tools to give a short proof of renormalizability of pQFT on closed
Riemannian manifolds in the sense of Epstein–Glaser, extending previous re-
sults [36, 37] of N. Nikolov and collaborators on flat space. Our approach
builds on works of [5, 6, 14,17,19,20,38,39,44].

This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01).
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1.1. Statement of the main Theorem

1.1.1. Preliminary definitions. In Minkowski pQFT, we are interested in
making sense of time-ordered correlation functions of Wick powers of free
fields denoted by 〈

T
(

: φi1 : (x1) · · · : φin : (xn)
)〉
. (1.1)

These are objects living on the configuration space Mn that can be expressed
formally, using the Feynman rules, as linear combinations of products of the
form ∏

1≤i<j≤n

G(xi, xj)
nij , (1.2)

where nij ∈ N and G is the Green function, that will be recalled below for
the Euclidean case. A product (1.2) is called Feynman amplitude and it is
depicted pictorially by a graph with n labeled vertices {1, . . . , n}, where the
vertices i and j are connected by nij unoriented lines. In principle, since the
product of distributions is not always well-defined, the previous product (1.2)
only makes sense as a formal expression or as a smooth function defined on
Mn outside of all the diagonals. In the latter case, the aim of pQFT could be
reexpressed as trying to find a distribution extending the mentioned smooth
function defined outside of all diagonals and satisfying certain properties to
be explained below.

To illustrate the problem of extension of distributions, let us start with
a simple example which is discussed in [40], Example 9, p. 140, and actually
goes back to J. Hadamard. Denote by Θ the Heaviside function (i.e. the
indicator function of R≥0) and consider the function x−1Θ(x), viewed as a
distribution on D′(R \ {0}). The linear map

ϕ 7−→
∫ ∞

0

dx
ϕ(x)

x
(1.3)

is clearly ill-defined for ϕ ∈ D(R) if ϕ(0) 6= 0 since the integral
∫∞

0
dx/x

diverges. However, the integral
∫∞

0
dxx−1ϕ(x) converges if ϕ(0) = 0 and

an elementary estimate shows that x−1Θ(x) defines a linear functional on
the ideal xD(R) of D(R) formed by functions vanishing at 0. Note that the
following expression

lim
ε→0

∫ 1

ε

dx

(
ϕ(x)− ϕ(0)

)
x

+

∫ ∞
1

dx
ϕ(x)

x
(1.4)

converges, for all ϕ ∈ D(R). One thus defines an extension of x−1Θ(x) by

x−1
+ = lim

ε→0

∫ ∞
ε

dxx−1 + log(ε)δ, (1.5)

where we subtracted the distribution log(ε)δ supported at 0, which becomes
singular when ε→ 0, and it is called a local counterterm. The distributional
extension x−1

+ ∈ D′(R), called the Hadamard finite part, extends the linear

functional x−1Θ(x) ∈ (xD(R))
′
. This example shows the most elementary

situation where we can extend a distribution by an additive renormalization.
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Going back to pQFT, we will work with the Euclidean formulation,
i.e. where one uses Schwinger functions instead of the time-ordered corre-
lation functions (1.1). In this case we consider a compact Riemannian man-
ifold (M, g) and let −∆g be the corresponding Laplace–Beltrami operator.
The Laplace operator has a discrete spectrum σ(−∆g) = {0 = λ0 < λ1 6
λ2 6 · · · → ∞}. We will denote by eλ the corresponding eigenfunction to
λ ∈ σ(−∆g), i.e. solutions of the equation −∆geλ = λeλ. Let us recall the
definition of the associated Green function.

Definition 1.1. The series ∑
λ∈σ(−∆g)\{0}

λ−1eλ(x)� eλ(y) (1.6)

converges to a distribution G in D′(M ×M). Furthermore, G defines a fun-
damental solution of the Laplace operator −∆g, i.e. if (u, f) ∈ C∞(M)2 is a
solution of the elliptic equation ∆u = f , then u(x) =

∫
M
G(x, y)f(y)dv + k

for some constant k, where dv is the Riemannian volume and G is symmetric
with respect to permutation of the variables. We remark that G is a smooth
function outside of the diagonal.

1.1.2. Renormalization maps. In order to encompass all products of the form
(1.2), we will consider a slightly more general index set for the variables
appearing in them.

Definition 1.2. Let (M, g) be a Riemannian manifold. Given any finite subset
I ⊆ N of the positive integers, we denote by M I the configuration space of
points labeled by I and for any subset J ⊆ I, DJ is the subset of M I given
by {(xi)i∈I |xj = xk for some (j, k) ∈ J2}. As usual, if I = {1, . . . , n}, we
shall denote M I simply by Mn. Define O(M I) to be the vector subspace of
the space of smooth functions on M I \DI generated by{ ∏

(i<j)∈I2
G(xi, xj)

nij , nij ∈ N
}
.

We will now briefly explain the following notation that we will use in
this article. Assume we have a linear map R : E → D′(M), where E is a
vector space and M is a smooth manifold. For any open subset U ⊆ M ,
let iU : U ↪→ M denote the inclusion map. By R|U , we mean the operator
i∗UR : E → D′(U) obtained as the composition of R and the pull–back by
iU , i.e. taking the restriction of the image of R to the open subset U .

Now, following the recent work [36] by N. Nikolov, R. Stora and I.
Todorov, we can give an elegant definition of renormalization scheme as fol-
lows.

Definition 1.3. Let (M, g) be a Riemannian manifold. A renormalization
scheme is a sequence of (not necessarily continuous) linear maps RMI [g] :
O(M I)→ D′(M I), called renormalization maps, indexed by finite subsets I
of N satisfying the following system of functional equations:



4 Nguyen Viet DANG and Estanislao HERSCOVICH

(i) Given any t ∈ O(M I) and ϕ ∈ D(M I \DI), then

〈RMI [g](t), ϕ〉 = 〈t, ϕ〉. (1.7)

This condition expresses the fact that RMI [g](t) is a distributional ex-
tension of t ∈ C∞(M I \DI).

(ii) Given any pair of disjoint finite subsets I, J ⊆ N, and any pair of
open subsets U, V ⊆ M such that dist(U, V ) > 0, set U I × V J =
{(xi)i∈ItJ |∀i ∈ I, xi ∈ U, and ∀j ∈ J, xj ∈ V }. Then

RM(ItJ) [g]|UI×V J = RMI [g]|UI �RMJ [g]|V J . (1.8)

This equation states that our renormalization map RM(ItJ) [g] factorizes
on some regions of the configuration space M (ItJ) and translates the
fact that renormalization must preserve the locality property.

We are also interested in imposing the following covariance condition on the
construction of the renormalization scheme with respect to the Riemannian
metric g. It means that it only depends on the metric and not the chosen
coordinates.

(iii) Given any diffeomorphism Φ : N →M of N onto an open submanifold
of M , any Riemannian structure g on M , any finite set I ⊆ N and any
t ∈ O(M I), then

RNI [Φ∗g]
(
(ΦI)∗t

)
= (ΦI)∗

(
RMI [g](t)

)
, (1.9)

where ΦI : N I →M I is the diagonal map induced by Φ.

We will say that the renormalization scheme satisfies the restricted covariance
condition if the previous condition holds when Φ surjective and N and M
are closed manifolds.

Remark 1.4. By choosing a set of isomorphism representatives M in the
groupoid category of closed Riemannian manifolds provided with isometries
as morphisms, we see that in order to satisfy the restricted covariance con-
dition (iii) in the previous definition, it suffices to construct renormalization
maps {RMI [g]}I satisfying (i) and (ii) such that RMI [g] is equivariant under
the action of the isometry group of (M, g), for each representative M ∈M.

1.1.3. The main result of the article: renormalization as a problem of exten-
sions of distributions. One main ingredient of a Euclidean pQFT on some
Riemannian manifold (M, g) is to find some solution {RMI [g]}I to the above
system of functional equations. The main result of our paper, namely The-
orem 6.5, gives the existence of such renormalization maps on a closed Rie-
mannian manifold, based on the nice work [36].

Theorem 1.5 (Main theorem). Let (M, g) be a smooth compact Riemannian
manifold without boundary and G be the Green function of −∆g. Then, there
exists a solution {RMI [g]}I to the system of functional equations of Definition
1.3 that is equivariant under the action of the isometry group of (M, g).
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1.1.4. Comparison to related work. To our knowledge, one of the first rigor-
ous results on the perturbative renormalization of the φ4 theory on curved
Riemannian manifolds was given by C. Kopper and V. Müller (see [27]) and it
is based on some implementation of the Wilson–Polchinsky equations to de-
rive the renormalization group flow of the coupling constants. In his book [9]
(see also [10]), K. Costello gives a different approach to the first problem.
First, from any action functional of the form S(φ) =

∫
M
φ∆gφ + Iint(φ),

where ∆g is the Laplace–Beltrami operator and the interaction part Iint is at
least cubic in φ, he defines a notion of effective field theory via the effective
action

Γε(χ) = ~ log

(∫
dµGε(φ)e

iS(φ+χ)
~

)
,

where dµGε is the Gaussian measure whose covariance is a regularized prop-
agator Gε with Gε → G as ε → 0. He then proves that starting from any
local action functional S, there is a local action functional SCTε so that the
limit

lim
ε→0

Γε(χ) = ~ log

(∫
dµGε(φ)e

i(S(φ+χ)+SCTε (φ+χ))

~

)
exists for every power of ~ (see [9], Thms. 9.3.1 and 10.1.1). The key point
is that SCTε might contain infinitely many counterterms and that the limit
can always be defined even for theories that are not renormalizable in the
classical sense.

For quantum fields on curved Lorentzian spacetimes, a proof of the
renormalizability was first achieved by R. Brunetti and K. Fredenhagen in [5],
and by S. Hollands and R. Wald in [19,20]. They rely on the Epstein–Glaser
approach, which reformulates renormalization as a problem of extension of
distributions satisfying physical constraints such as causality. Recently, this
method was revisited in the elegant article [36], which discusses Epstein–
Glaser renormalization in flat Minkowski space. Costello’s approach is similar
to the above methods because they both deal with Feynman amplitudes in
position space and make sense for all quantum field theories, even those that
are not renormalizable in the classical sense.

Our goal in this paper is to give a simple existence proof of the renormal-
izability of quantum field theories on arbitrary closed Riemannian manifolds,
following the Epstein–Glaser philosophy. It thus gives an alternative approach
to the one by Costello. To reach our goal, we will need to revisit some meth-
ods in analysis originally developed by H. Whitney in [47], and which were in
turn improved by B. Malgrange and S.  Lojasiewicz, to compare these tech-
niques with the approach by scaling of Y. Meyer in [33] and the first author
in [11]. We will finally apply them to our renormalization problem.

In the mathematical literature, the idea to consider extendible distribu-
tions really goes back to  Lojasiewicz (see [28]), whereas tempered functions
already appear in the work [29, 30] of Malgrange. However, the first general
definition of a tempered distribution on any open set U in some manifold M
is due to M. Kashiwara: a distribution is tempered if it is extendible to U
(see [22], Lemma 3.2, p. 332, or also [7]). By our Theorem 4.1, this will in



6 Nguyen Viet DANG and Estanislao HERSCOVICH

turn imply that these distributions are in TM\∂U , i.e. they have moderate
growth along ∂U . The previously mentioned work by Kashiwara was further
extended in [16, 25, 26]. On the other hand, tempered functions and distri-
butions were also recently studied in the context of real algebraic geometry
in [1, 7] with applications to representation theory. A different approach to
the extension problem in terms of scaling was developed by Meyer in his
book [33]. His purpose was to study the singular behavior at given points of
irregular functions with applications to multifractal analysis (see [23]).
Acknowledgements. The first author would like to thank Christian Brouder,
Frédéric Hélein, Stefan De Bièvre, Laura Desideri, Camille Laurent Gengoux
and Mathieu Stiénon for useful discussions, and the Labex CEMPI for excel-
lent working conditions.

2. The general problem of extension of distributions

We recall that, given a smooth manifold M , C∞(M) (also denoted by E(M))
has a unique structure of Fréchet algebra (see [34], Thm. 14.2), which can
be described as follows. Let {K`}`∈N0 be a countable collection of compact
subsets of M such that M = ∪`∈N0K

◦
` and K` is included in a chart (Ui` , φi`)

of the atlas of M . For `,m ∈ N0, define

p`,m(f) = sup
x∈φi` (K`)

sup
ᾱ∈Nn

0,≤m

∣∣∣∣∣2m ∂α(f ◦ φ−1
i`

)

∂xα
(x)

∣∣∣∣∣ , (2.1)

where Nn0,≤m is the subset of Nn0 formed by the elements ᾱ = (α1, . . . , αn)

such that |ᾱ| = α1+· · ·+αn ≤ m, and f ∈ C∞(M). This family of seminorms
induces a structure of Fréchet algebra on C∞(M) (see [31], IV.4.(2)). A sim-
ilar construction tells us that Cm(M) (also denoted by Em(M)) is a Fréchet
algebra, for any m ∈ N0. Given a compact subset K ⊆ M , we will denote
by DK(M) the subspace of the LCS E(M) formed by the smooth functions
whose compact support is included in K. Let D(M) be the vector subspace
of E(M) formed by all smooth functions on M of compact support, and its
usual locally convex topology, for which D(M) is an (LF)-space . If Ω ⊆M is
an open subset, D(Ω) will denote the subset of D(M) formed by the smooth
functions whose compact support is included in Ω. Moreover, given a closed
subset K ⊆M , we will denote by DK(Ω) the vector subspace of D(Ω) formed
by the smooth functions whose compact support is included in K.

Since we will treat the case of Riemannian manifolds, there is a canonical
identification of LCS between C∞(M) and the space of 1-densities Vol(M),
by means of the Riemannian density of M , and the same is true if the con-
cerned objects have compact support. As a consequence, we can (and will)
consider a distribution on a Riemannian manifold M to be a continuous lin-
ear functional of D(M). We will denote them by D′(M). We refer the reader
to [21], Ch. 6, for details. Given a compact subset K ⊆M , we will denote by
D′K(M) the vector subspace of D′(M) formed by distributions whose support
is included in K. The vector subspace of D′(M) formed by all distributions
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of compact support is canonically identified with E ′(M). We also remark
that the dual spaces considered previously are in principle provided with the
strong topology, unless otherwise stated.

2.1. An abstract characterization of the extension problem and a brief sum-
mary of the results

In order to deal with the requirement (i) in Definition 1.3, we first investigate
the following problem which has a simple formulation. Let M be a smooth
manifold and Ω ⊆M be an open subset. A distribution t ∈ D′(Ω) is extendible
to M if and only if it belongs to the image of the restriction map

D′(M)→ D′(Ω). (2.2)

As this map is not surjective, the previous extension problem of distributions
is tantamount to explicitly determining the image of (2.2), that we are going
to denote by T (Ω). It is a LCS with subspace topology of that of D′(Ω). Since
(2.2) is clearly continuous, its kernel D′M\Ω(M) is a closed subspace of D′(M).

Moreover, D′M\Ω(M) is the space formed by all distributions t ∈ D′(M)

satisfying that supp(t) ⊆M \ Ω, so we get a sequence of LCS

0→ D′M\Ω(M)→ D′(M)→ T (Ω)→ 0 (2.3)

such that the underlying short sequence of vector spaces is exact. By the
First Isomorphism theorem, we see that there is a bijective continuous linear
map from D′(M)/D′M\Ω(M) onto the subspace T (Ω) of D′(Ω) formed by the

extendible distributions. We remark that the previous map is not in general
a topological isomorphism, since the mapping (2.2) is not necessarily closed.

Even though extendible distributions do not form a sheaf (cf. Remark
3.2), they satisfy the following nice property, due to  Lojasiewicz in the case
M is the Euclidean space (see [28], Section 5, Prop. 1, p. 96), and whose
proof applies verbatim to this more general situation.

Lemma 2.1. Let Ω ⊆ M be an open set of a smooth manifold M , and let
t ∈ D′(Ω) be a distribution. Then, t is extendible to M if and only if there is
an open covering {Ωi}i∈I of M such that t|Ωi∩Ω is extendible to M , for all
i ∈ I. One may even assume that Ωi is relatively compact, for all i ∈ I.

We will introduce in Subsection 3.1 a natural growth condition on t ∈
D′(Ω) that measures the singular behavior of t near the boundary ∂Ω and
that addresses the previous issue: if t satisfies the referred growth condition,
then there exists a distribution t̄ ∈ D′(M) such that the restriction of t̄ to
Ω coincides with t. Moreover, we will explicitly construct in Subsection 4.1
a linear map PΩ : T (Ω) → D′(M) such that for all t ∈ T (Ω), PΩ(t)|Ω = t,
and eventually give explicit formulas for PΩ. We will discuss the different
possibilities for extension maps PΩ in case M = Rn which is the local case.

Our approach in the present paper combines the more traditional one in
the mathematical physics literature where one tries to extend a distribution
on M \X to M , where X is a closed submanifold and where the singularities
of the distributions are measured in terms of the scaling degree by means
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of Euler vector fields (see [12]), and a more general approach where distri-
butions are extended along closed subsets X and the singular behavior is
measured by the distance function to X. Note that in general the notion of
scaling in the transverse directions to X is not even well defined, which is
not the case for the notion of moderate growth. Another advantage of the
framework presented in our paper is its great flexibility, since we can extend
directly Feynman amplitudes on the complement of all the diagonals in the
configuration spaces, which thus involve stratified sets and not submanifolds.

2.2. Some ideals associated to the extension of distributions

2.2.1. Taylor decomposition. Let X ⊆ M be a closed subset of M and m ∈
N0. Denote by Im+1

X (M) the closed ideal of Cm(M) formed by the functions
satisfying that all their derivatives of order less than or equal to m vanish at
any point of X. Then we have a short exact sequence of Fréchet spaces

0→ Im+1
X (M)

ιm→ Cm(M)→ Em(X)→ 0, (2.4)

where Em(X) is precisely the Banach space of Whitney jets on X (see [30],
Def. 2.3, p. 3). This short exact sequence has even a splitting of Fréchet spaces
(see [30], p. 10, or [2], Thm. 2.3, p. 146), where we recall that a short exact
sequence of Fréchet spaces means that the sequence of underlying vector
spaces is exact (see [32], p. 70). Since (2.4) is an exact sequence of Fréchet
spaces, the dual sequence of vector spaces

0→ Em(X)′ → Cm(M)′
ι′m→ Im+1

X (M)′ → 0 (2.5)

is exact (see [32], Prop. 26.4, p. 308).

Definition 2.2. Let X be a closed subset of M . A Taylor decomposition of
Cm(M) along X is a continuous projector Π : Cm(M)→ Cm(M) with image
Im+1
X (M). Equivalently, a Taylor decomposition of Cm(M) along X is given

by a (continuous) splitting of (2.4).

Remark 2.3. The reader can think of the Taylor decomposition of Cm(M)
as a way to decompose a Cm function as a sum of a Taylor remainder in
Im+1
X (M), which vanishes at order m on X, and a Taylor polynomial, which

is some function in a fixed complement space of Im+1
X (M) in Cm(M) given by

the kernel of Π. For example, if X = {x} is given by a single point in U ⊆ Rn,
Em(X) is isomorphic to the space Rm[X1, ..., Xn] of abstract polynomials of
degree less than or equal to m in n variables. In this case, we can choose the
projector Π : Cm(U)→ Cm(U) such that Π(f) is the usual Taylor polynomial
of f at x of degree m.

We will use the following proposition for classifying the possible exten-
sions of an extendible distribution.

Proposition 2.4. Let M = Rn and X ⊆ M be a closed subset. Then, given
any m ∈ N0, there is a canonical bijection between

(i) the space of Taylor decompositions of Cm(M) along X;
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(ii) the collection of closed subspaces B of Cm(M) such that Cm(M) =
Im+1
X (M)⊕B;

(iii) the space of continuous linear maps R from Im+1
X (M)′ to E ′m(M) such

that ι′m ◦ R is the identity map of Im+1
X (M)′, where Im+1

X (M)′ and
E ′m(M) are provided with the weak? topology.

Moreover, any of these spaces is nonempty.

Proof. The equivalence between conditions (i) and (ii) follows directly from
the Open mapping theorem for Fréchet spaces (see [32], Thm. 24.30), whereas
the equivalence between conditions (i) and (iii) follows from the Bipolar the-
orem (see [32], Thm. 22.13). Finally, the nonemptiness is a consequence of
the Whitney extension theorem (see [30], p. 10, or [2], Thm. 2.3, p. 146). �

A continuous linear map R from Im+1
X (M)′ to E ′m(M) such that ι′m ◦R

is the identity map of Im+1
X (M)′, where Im+1

X (M)′ and E ′m(M) are provided
with the weak? topology, will be called a renormalization map of order m.

Let I∞X (M) be the closed ideal of C∞(M) formed by all functions whose
derivatives of all orders vanish at every point of X. This is a nuclear Fréchet
space since it is a closed subspace of the nuclear Fréchet space C∞(M). We
then define the Fréchet space E(X) as the quotient of C∞(M) by I∞X (M),
i.e. we have the short exact sequence of Fréchet spaces

0→ I∞X (M)→ C∞(M)→ E(X)→ 0. (2.6)

One can think of the space E(X) as some sort of ∞-jets in “the transverse
directions” to X.

2.2.2. An abstract characterization of the extendible distributions of com-
pact support. We first remark that the strong dual of E(X) is canonically iso-
morphic to the closed subspace (I∞X (M))⊥ of the strong dual of C∞(M) given
by the continuous functionals that vanish on I∞X (M) (see [32], Lemma 23.31).
Moreover, (I∞X (M))⊥ coincides with the subspace C∞(M)′X of C∞(M)′

given by the distributions with compact support included in X (the inclusion
(I∞X (M))⊥ ⊆ C∞(M)′X is trivial, whereas the other contention follows from
[21], Thm. 2.3.3). Hence, by taking the strong dual of the sequence 2.6 and
taking into account the previous comments, we obtain the short sequence of
(DNF) spaces (see [7], Appendix A, for a nice short exposition)

0→ C∞(M)′X → C∞(M)′ → I∞X (M)′ → 0. (2.7)

We remark that the previous short sequence is exact for the underlying struc-
tures of vector spaces (see [32], Prop. 26.4). Hence, by the First Isomorphism
theorem, we conclude that there is a bijective continuous linear map from
C∞(M)′/C∞(M)′X ' (I∞X (M))′ onto (I∞X (M))′. Furthermore, since C∞(M)
is a Fréchet-Schwartz space, [32], Prop. 26.24, implies that this map is a topo-
logical isomorphism. If the manifold M is compact, then there is morphism
from the short exact sequence (2.7) of (DNF) to (2.3) such that the first
two maps are topological isomorphisms but the third map (from I∞X (M)′ to
T (Ω)) is only bijective and continuous.
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Remark 2.5. When X is a submanifold of Rn, it is interesting to think of
E(X) as smooth functions restricted to the formal neighborhood of X. We
can think of the formal neighborhood of X as the topological dual of E(X)
which is nothing but the space of distributions E ′X(Rn) with compact support
contained in X.

2.2.3. An explicit construction of Π for diagonals. The aim of this subsub-
section is to explicitly construct a set of renormalization maps that satisfy
a certain covariance condition with respect to the choice of the Riemannian
metric g on a manifold M . Therefore, we are led to construct a projection
map Π[M, g] in the particular case where the closed subset is the small di-
agonal dn = {x1 = · · · = xn} of the configuration space Mn, for every
n ∈ N, such that Π[M, g] is covariant with respect to the Riemannian man-
ifold (M, g), i.e. Π naturally induces a functor on the (groupoid) category
of closed Riemannian manifolds provided with isometric maps (see (2.12)).
Pick a Riemannian metric g on M and consider the (n− 1)-th fiber product
En(M) = TM ×M · · · ×M TM → M . It is a vector bundle over M whose

fiber over x ∈M is (TxM)
n−1

. An element of the bundle En(M) will be de-
noted by (x; v2, . . . , vn) where x lives on the base and v2, . . . , vn are in TxM .
Using the metric g, for every x ∈ M , we can define an exponential map
expx : Ux ⊆ TxM → M , which is a local diffeomorphism on a neighborhood
Ux of 0 ∈ TxM . We thus define a map

En : (x, ξ2, . . . , ξn−1) ∈ U 7→
(
x, expx(v2), . . . , expx(vn)

)
∈Mn, (2.8)

which is a diffeomorphism on some neighborhood U ⊆ En(M) of the zero
section.

On the other hand, consider the commutative Lie group R>0 for the
usual product of the real numbers, and the action σ of R>0 on En(M) given
by scaling in the fibers, i.e. σ(λ, (x; v)) = (x;λv) ∈ En(M), where λ ∈ R>0

and (x; v) ∈ En(M). Hence, for every (x; v) ∈ En(M), σ(x;v) : R>0 → En(M)
is smooth and one defines the vector field ρ : En(M)→ TEn(M), called the
Euler vector field [12], by

ρ(x; v) =
dσ(x;v)(λ)

dλ

∣∣∣∣
λ=1

.

It is clear that ρ is complete and its global flow Φρ sends (t, (x; v)) ∈ R ×
En(M) to σ(et, (x; v)). Consider the subalgebra A of C∞(En(M)) given by
all the smooth functions f that are polynomial on the fibers of En(M), i.e.
f |En(M)x : En(M)x → R is a polynomial function, for all x ∈ M . Since the
map σ(λ,−) gives an action of R>0 on A by automorphisms of algebras via
f 7→ f ◦ σ(λ−1,−), it induces an action of the corresponding Lie algebra
R on A by derivations. In particular, ρ acts by derivations on A. The next
lemma shows that this action has spectrum included in N0, and its spectral
decomposition is given by the Taylor expansion.

Lemma 2.6 (Spectral projectors). There is a decomposition A = ⊕k∈N0
Ak

such that Ak is the eigenspace of ρ associated with the eigenvalue k ∈ N0 and
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a sequence of spectral projectors {Πk}k∈N0
, where Πk : C∞(En(M)) → Ak

such that, given any f ∈ C∞(En(M)) and any N ∈ N0,

f −
N∑
k=0

Πk(f) ∈ IN+1
0

(
En(M)

)
,

where IN+1
0 (En(M)) is the ideal of functions all of whose derivatives of order

less than or equal to N vanish along the zero section 0 ⊆ En(M).

Note that the projectors Πk are algebraic analogues of spectral projec-
tors appearing in [13], where the difference is that the Euler vector field ρ
has critical set equal to a submanifold instead of singular points for Morse
gradients and the discussion here is only local.

Proof. Let etρ = Φρ(t) denote the one parameter group of diffeomorphisms
generated by the Euler field ρ. For every k ∈ N0, we define the projector Πk

by

Πk(f) =
1

k!

(
d

dλ

)k (
e− log(λ)ρ∗f

) ∣∣∣∣
λ=1

. (2.9)

Observe that by its definition, Πk is global and intrinsic. Also by definition
it is clear that ρΠk = kΠk. Now we will consider the action of Πk in some
local trivialization of the bundle En(M) to prove that the remainder f −∑N
k=0 Πk(f) really vanishes at order N along the zero section of En(M).

Recall that En(M) is an Euclidean bundle whose metric depends only on the
metric g since En(M) is a fiber product of (TM, g) viewed as an Euclidean
bundle. Over some contractible open subset U , the bundle En(M)|U admits

some orthonormal moving coframe (hix)
(n−1)d
i=1 , for x ∈ U . For any chart

Φ : U → Ω ∈ Rd the map (x; v) ∈ En(M)|U 7→ (Φ(x), hix(v)) ∈ Ω × R(n−1)d

trivializes the bundle over U and (hi)i can be thought of as linear coordinates
in the fibers. Then the vector field ρ reads

∑
i h

i∂hi in this trivialization and
the result follows from the usual Taylor expansion in the variables (hi)i.
Hence by some slight notation abuse for f ∈ C∞(En(M)|U ), we can write in
the above trivialization

f(x, h) =
∑
|α|6N

hα

α!

∂|α|f

∂hα
(x, 0) +O

(
|h|N+1

)
and we thus find the explicit formula for the spectral projector

Πk =
∑
|α|=k

|hα〉
α!
〈∂αh δ0(h)|, (2.10)

where

Πk(f) =
∑
|α|=k

hα

α!

∂|α|f

∂hα
(x, 0) (2.11)

is homogeneous of degree k with respect to scaling, i.e. ρΠk = kΠk. Hence,
given a contractible open subset U as before, every f compactly supported
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function f at x ∈ U has a Taylor expansion

f −
N∑
k=0

Πk(f) ∈ IN+1
0

(
En(M)|U

)
.

The result for f defined on the whole manifold M follows from the fact that
ρ is globally defined on En(M) and by a classical argument using partitions
of unity. �

By the above construction we also obtain the following result.

Corollary 2.7. The projectors {Πk}k∈N0 constructed above only depend on the
metric g.

Proposition 2.8. Let (M, g) be a closed Riemannian manifold of dimension
d, and let n ∈ N. For every m ∈ N0, there is a projector Π≤m[M, g] :

C∞(Mn) → C∞(Mn) such that Im(Π≤m[M, g]) ⊆ Im+1
dn

(Mn). Moreover,

the construction of Π≤m[M, g] satisfies that

Φ∗
(
Π≤m[M, g]ϕ

)
= Π≤m[N, g′](Φ∗ϕ), (2.12)

for every ϕ ∈ C∞(Mn) and every diffeomorphism Φ : (M, g) → (N, g′),
where Φ∗ϕ ∈ C∞(Nn) is the obviously induced map.

Proof. Assume that the injectivity radius of M is greater than ρ > 0 (see
[24], Def. 1.4.6). Let χ ∈ C∞c (R) be a smooth function such that χ = 1 if
|t| 6 ρ2/4 and χ = 0 if |t| > ρ2. We denote by δ : M×M → R>0 the distance
function on M ×M induced by the metric g, which is smooth on δ−1[0, ρ).
On configuration space Mn, set δn(x1, . . . , xn) = δ2(x1, x2)+ · · ·+δ2(x1, xn).
Then, set :

Π≤m[M, g](ϕ) = χ(δn)(En)∗

(
E∗n (χ(δn)ϕ)−

m∑
k=0

Πk(E∗n (χ(δn)ϕ))

)
+

(
1− χ2(δn)

)
ϕ.

It only depends on the metric g and the choice of test function χ, but not on
the chosen coordinates on M or Mn. �

3. Distributions of moderate growth

3.1. Generalities

We introduce now one of the main notions of this work.

Definition 3.1. Let M be a smooth manifold and let Ω ⊆ M be an open
subset. Set X = M \Ω. Pick any Riemannian metric g on M and let d be the
distance function on M induced by g. A distribution t ∈ D′(Ω) has moderate
growth (along X) if for every compact set K included in M , there are finite
seminorms p`1,m1

, . . . , p`N ,mN and a pair of constants C, s ∈ R≥0 such that∣∣t(ϕ)
∣∣ ≤ C(1 + d

(
supp(ϕ), X

)−s)
sup

1≤i≤N
p`i,mi(ϕ), (3.1)
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for all ϕ ∈ D(Ω) with support included in K. We denote by T (Ω) the set of
distributions in D′(Ω) with moderate growth.

Remark 3.2. Note that the mapping Ω 7→ T (Ω) clearly forms a separated
presheaf on M . We remark however that it is not necessarily a sheaf. More-
over, taking into account that all metrics on M are locally equivalent, we see
that T (Ω) is in fact independent of the choice of Riemannian metric g of M ,
so T (Ω) is well-defined.

On the other hand, assume there is t̄ ∈ D′(M) and set t = t̄|Ω. Then,
(3.1) is clearly satisfied with s = 0, so t is of moderate growth.

The next result follows directly from Leibniz’s rule and a standard ma-
nipulation of upper bounds.

Lemma 3.3. Let M be a smooth manifold and let Ω ⊆M be an open subset. If
t ∈ D′(Ω) is a distribution of moderate growth along M \Ω and f ∈ C∞(Ω) is
a smooth function, then the distribution ft ∈ D′(Ω) also has moderate growth
along M \ Ω.

3.2. The local case

We will consider the following special situation for distributions (of moderate
growth). All along this subsection M ⊆ Rn will denote an open subset,
X ⊆ Rn will be a compact subset included in M and Ω = M \X. Set IX(M)
to be the subset of E(M) formed by all smooth functions ϕ satisfying that

supp(ϕ) ∩X = ∅. (3.2)

Note that IX(M) canonically includes D(Ω). The aim of this subsection is
to provide an equivalent but simpler description of a distribution t ∈ D′(Ω)
of moderate growth along X having compact support (see Proposition 3.6).
In this case, we define ‖ϕ‖Ym = supx∈Y,|α|≤m |∂αxϕ(x)|, for any subset Y ⊆ Ω
and any smooth function defined on Ω.

We first note that, by precisely the same argument as the one used to
prove that the continuous dual of E(M) coincides with the vector subspace of
D′(M) formed by the distributions of compact support, we have the following
result.

Fact 3.4. Let t ∈ D′(Ω) be a distribution with supp(t) compact in M . Then,
t has moderate growth along X if and only if there are finite (C, s,m) ∈
R2
≥0 × N0 such that∣∣t(ϕ)

∣∣ ≤ C(1 + d
(

supp(ϕ), X
)−s)‖ϕ‖Ωm, (3.3)

for all ϕ ∈ IX(M).

Given m ∈ N0 ∪ {∞}, we recall that Im+1
X (M) is the closed ideal of

Cm(M) formed by all functions whose derivatives of order (strictly) less than
m+ 1 vanish at every point of X. It has the subspace topology of Cm(M).

We will need the following technical result.
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Lemma 3.5. Let Y ⊆ Rn be a compact subset and let (d,m) ∈ N2
0 be two

nonnegative integers. Then, there is a family of functions χλ ∈ C∞(Rn,R≥0)
parametrized by λ ∈ (0, 1] satisfying that χλ = 1 if d(x, Y ) ≤ λ/8, χλ = 0 if

d(x, Y ) ≥ λ, and such that there exists a constant C̃ ≥ 0 satisfying that

‖χλϕ‖Km ≤ C̃λd‖ϕ‖
K∩
{
d(x,Y )≤λ

}
m+d , (3.4)

for all K ⊆ Rn compact, λ ∈ (0, 1] and ϕ ∈ Im+d+1
Y (Rn), where the constant

C̃ does not depend on ϕ nor λ.

Proof. Choose φ ∈ C∞(Rn,R≥0) such that
∫
Rn φ = 1, and φ = 0 if |x| ≥

3/8. Then, set φλ(x) = λ−nφ(λ−1x), for all x ∈ Rn, and let αλ be the
characteristic function of the set{

x ∈ Rn|d(x, Y ) ≤ λ

2

}
.

Define χλ to be the convolution product φλ∗αλ. Hence χλ(x) = 1 if d(x, Y ) ≤
λ/8, and it equals 0 if d(x, Y ) ≥ λ. By Leibniz’s rule one has

∂α(χλϕ)(x) =
∑
|k|≤|α|

(
α
k

)
∂kχλ(x)∂α−kϕ(x),

for every α such that |α| ≤ m. It suffices to estimate each term ∂kχλ∂
α−kϕ(x)

of the above sum, where |k| ≤ |α| and x ∈ K. For any such multi-index k,
there is Ck > 0 such that |∂kχλ(x)| ≤ Ck/λ

|k| for all x ∈ Rn \ Y , and

supp(∂kχλ) ⊆ {x ∈ Rn|d(x, Y ) ≤ λ}. Therefore, for all ϕ ∈ Im+d+1
Y (Rn),

x ∈ supp(∂kχλ∂
α−kϕ), and y ∈ Y such that d(x, Y ) = |x − y|, we find that

∂α−kϕ ∈ I |k|+d+1 since it vanishes at y with order at least |k| + d. As a
consequence,

∂α−kϕ(x) =
∑

|β|=|k|+d

(x− y)βRβ(x),

where the right hand side is just the integral remainder in Taylor’s expansion
of ∂α−kϕ around y. It only depends on the jet of ϕ of order less than or equal
to m+ d. Hence,∣∣∂kχλ∂α−kϕ(x)

∣∣ ≤ Ck
λ|k|

∑
|β|=|k|+d+1

∣∣(x− y)βRβ(x)
∣∣.

Since Rβ only depends on the jet of ϕ of order less than or equal to m + d,
we see that ∣∣∂kχλ∂α−kϕ(x)

∣∣ ≤ Ckλd sup
x ∈ K,

d(x, Y ) ≤ λ

∑
|β|=|k|+d

∣∣Rβ(x)
∣∣,

for all x ∈ K, and the conclusion easily follows. �

We provide now the main result of this subsection.
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Proposition 3.6. Let t ∈ D′(Ω) be a distribution having compact support (in-
cluded in Ω). Then, t has moderate growth along X if and only if there are
constants C ∈ R≥0 and m ∈ N0 such that∣∣t(ϕ)

∣∣ ≤ C‖ϕ‖Ωm, (3.5)

for all ϕ ∈ IX(M).

Proof. By Fact 3.4, t has moderate growth along X if and only if if there
exists (C, s,m) ∈ R2

≥0 × N0 such that∣∣t(ϕ)
∣∣ ≤ C(1 + d

(
supp(ϕ), X

)−s)‖ϕ‖Ωm, (3.6)

for all ϕ ∈ IX(M).

If s = 0, then there is nothing to prove. It remains to treat the case
s > 0, which we suppose from now on. Since t has compact support, consider
a smooth function f of compact support such that f(x) = 1 for all x in a
neighborhood of supp(t). As t(fϕ) = t(ϕ), we may (and will) assume that
ϕ has compact support. Our idea is to absorb the divergence in (3.6) by
a dyadic decomposition, as follows. Let {χλ}λ∈(0,1] be the family of maps
constructed in Lemma 3.5 for Y = X. Given any ϕ ∈ D(Ω) ∩ IX(M), there
exists N ∈ N such that χ2−Nϕ = 0. In consequence, t(ϕ) = t((1 − χ2−N )ϕ),
and, in particular,

t(ϕ) =

N−1∑
j=0

t
(
(χ2−j − χ2−j−1)ϕ

)
+ t
(
(1− χ1)ϕ

)
.

We easily estimate t((1 − χ1)ϕ) by |t((1 − χ1)ϕ)| ≤ C‖ϕ‖Ωm, for all ϕ ∈
C∞(Rn), and for some constant C, since the support of 1−χ1 does not meet
X. Choose d ∈ N such that d− s > 0. Then,∣∣t(χ1ϕ)

∣∣
≤
N−1∑
j=0

∣∣∣t((χ2−j − χ2−j−1)ϕ
)∣∣∣

≤ C
N−1∑
j=0

(
1 + d

(
supp

(
ϕ(χ2−j − χ2−j−1)

)
, X
)−s)

‖(χ2−j − χ2−j−1)ϕ‖Ωm,

≤ C
N−1∑
j=0

(1 + 2s(j+4))(2−jd + 2−(j+1)d)C̃‖ϕ‖Ωm+d

≤ C ′‖ϕ‖Ωm+d,

where we have used the moderate growth property on the second inequality
and Lemma 3.5 in the third, and

C ′ = C̃C(1 + 2−d)

∞∑
j=0

2−jd(1 + 2(j+4)s) < +∞,
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which is a convergent series, since d− s > 0, and it is independent of N and
ϕ. Hence, we have proved that there exists C ′ ∈ R≥0 and m′ such that∣∣t(ϕ)

∣∣ ≤ C ′‖ϕ‖Ωm′
for all ϕ ∈ D(Ω), where m′ = m + d and d is any integer such that d > s.
The proposition is thus proved. �

We will also need the following result.

Lemma 3.7. Assume M = Rn. Let t ∈ D′(Ω) be a distribution having compact
support (included in Ω). If t has moderate growth along X, then there is a
nonnegative integer m ∈ N0 such that t has a unique continuous extension
tm ∈ (Im+1

X (M))′ given by

tm(ϕ) = lim
λ→0

lim
ε→0

t
(
(1− χλ)φε ∗ ϕ

)
, (3.7)

where ϕ ∈ Im+1
X (M), {χλ}λ∈(0,1] is the family of cut-off functions defined in

Lemma 3.5, and φε is any mollifier. Furthermore, if ϕ ∈ Im+1
X (M) ∩ E(M),

then

tm(ϕ) = lim
λ→0

t
(
(1− χλ)ϕ

)
. (3.8)

Proof. Let m ∈ N0 be the nonnegative integer given by Proposition 3.6. It
suffices to prove that Im+1

X (M) is the closure in Em(M) of the space IX(M)
of smooth functions whose support does not meet X. Let φε be a smooth
mollifier. By a classical regularization argument, we have limε→0(1−χλ)φε ∗
ϕ = (1−χλ)ϕ in Em(M), for all ϕ ∈ Em(M). Moreover, limλ→0(1−χλ)ϕ→ ϕ
in Im+1

X (M). Indeed, by Lemma 3.5 (see [30] p. 11), we have

‖χλϕ‖Km ≤ C̃‖ϕ‖
K∩
{
d(x,Ωc)≤λ

}
m → 0,

for all ϕ ∈ Im+1
X (M) and all compact subsets K ⊆ Rn, when λ→ 0. Hence,

ϕ = limλ→0(1−χλ)ϕ with respect to the topology induced by that of Em(M).
This proves the claim. �

Remark 3.8. Taking into account that any distribution of compact support
in an open subset M of Rn can be canonically regarded as a distribution
of compact support in the whole space by an extension by zero, it is clear
that Fact 3.4 and Proposition 3.6 also hold if one replaces ϕ ∈ IX(M) by
ϕ ∈ IX(Rn). Analogously, (3.8) of Lemma 3.7 also holds if one replaces
ϕ ∈ Im+1

X (Rn) by ϕ ∈ Im+1
X (M).

4. The main result : Extendible distributions have moderate
growth

4.1. The statement

We will now present the first main result of this article, mentioned in Sub-
section 2.1.
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Theorem 4.1. Let M be a smooth manifold and Ω be an open subset of M .
Set X = M \ Ω. Then, the following are equivalent:

(i) t ∈ D′(Ω) is extendible to M ;
(ii) t ∈ D′(Ω) has moderate growth;

(iii) there is a family of smooth functions {βλ}λ∈(0,1] ∈ C∞(Ω)(0,1] and a
family of neighborhood Uλ of X in M such that
(a) (βλ)|Uλ ≡ 0, for all λ ∈ (0, 1];
(b) limλ→0 βλ(x) = 1, for all x ∈ Ω;

and a family of distributions {cλ}λ∈(0,1] ∈ D′(M)(0,1] with support in X
such that the limit

lim
λ→0

(
tβλ − cλ

)
(4.1)

exists in D′(M) and defines an extension of t, where we remark that
tβλ is naturally regarded as a distribution in D′(M) by (a).

Proof. It clear that (iii) implies (i), and (i) implies (ii) by Remark 3.2. It only
remains to prove that (ii) implies (iii). This will be done in Section 4.2. �

Our moderate growth condition is weaker than the hypothesis of [22],
Lemma 3.3. Theorem 4.1 can also be viewed as a generalization of [33], Thm.
2.1, p. 48, and [5], Thm. 5.2, p. 645, which only treat the extension problem
in the case of a point. Condition (iii) in the above theorem is a generalization
of Hadamard’s definition of finite parts of distributions. This is beautifully
explained in Meyer’s book [33] (see p. 45), and it also linked with the appear-
ance of local counterterms in the renormalization of Feynman amplitudes in
pQFT. After proving this theorem, we will use it in the proof of Theorem
5.3, which states that the product of distributions in D′(M) with functions
which are tempered in Ω (see Definition 5.1 for the algebraM(Ω) of tempered
functions) is renormalizable. This also implies that the space of extendible
distributions (or, equivalently, of distributions in T (Ω)) is a module over
M(Ω) (see Theorem 5.4).

Remark 4.2. Note that the map sending t ∈ T (Ω) to t̄ ∈ D′(M) given by (4.1)
is linear. We will denote it by PΩ. Let G be any compact group acting on M
such that the action preserves Ω and M\Ω. As, a consequence, the short exact
sequence (2.3) is of G-modules. By using the standard Weyl’s unitarian trick
(see [46], §5), we also obtain a G-equivariant section PGΩ : T (Ω)→ D′(M) of
D′(M)→ T (Ω). Indeed, setting PGΩ = (

∫
G
g · PΩdg)/(

∫
G
dg), where dg is an

invariant Haar measure on G, we obtain the purported G-equivariant section.

4.2. Proof of Theorem 4.1

We will first prove a restricted version of Theorem 4.1, given by taking the
manifold M to be an open subset of Rn.

Proposition 4.3. Let M be an open subset of Rn, which is regarded as a
manifold, and let t ∈ D′(Ω) be a distribution of compact support. Then,
statements (i), (ii) and (iii) in Theorem 4.1 are equivalent.
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Proof. As explained in the proof of Theorem 4.1, the only nontrivial impli-
cation is (ii) ⇒ (iii). Since any distribution of compact support in an open
subset of Rn can be canonically extended by zero to a distribution of compact
support in Rn, we will assume without loss of generality that M = Rn. Let
m ∈ N0 be the nonnegative integer given by Proposition 3.6, {χλ}λ∈(0,1] be
the family of smooth functions considered in Lemma 3.7 for Y = X, and φε
be a mollifier. Set βλ = 1 − χλ. Note that βλ satisfies the conditions stated
in (iii) of Theorem 4.1. By Lemma 3.7, t has a unique continuous extension
tm ∈ Im+1

X (M)′ given by

tm(ϕ) = lim
λ→0

lim
ε→0

t
(
(1− χλ)φε ∗ ϕ

)
, (4.2)

where ϕ ∈ Im+1
X (M).

As recalled in Proposition 2.4, the short exact sequence (2.4) has a
continuous splitting, so there is a continuous retraction Im : Cm(Rn) →
Im+1
X (Rn) of the inclusion Im+1

X (Rn)→ Cm(Rn). Set B = Ker(Im) and Pm :
Cm(Rn) → B be the continuous linear map given by Pm = idCm(Rn) − Im.
For any ϕ ∈ Cm(Rn), we now define

t̄m(ϕ) = lim
λ→0

lim
ε→0

t
(
(1− χλ)φε ∗ Im(ϕ)

)
= lim
λ→0

lim
ε→0

t
(
(1− χλ)φε ∗ ϕ

)
− lim
λ→0

lim
ε→0

t
(
(1− χλ)φε ∗ Pm(ϕ)

)
.

(4.3)

Set

cλ(ϕ) = lim
λ→0

lim
ε→0

t
(
(1− χλ)φε ∗ Pm(ϕ)

)
,

for all ϕ ∈ Cm(Rn). This defines a family of distributions {cλ}λ∈(0,1] of
compact support included in X. It is now clear that (4.3) is tantamount to
(4.1), and the proposition follows. �

Proof of Theorem 4.1 from Proposition 4.3. Choose a locally finite cover of
M by relatively compact open charts {(Ui, φi)}i∈I and a subordinated smooth
partition of unity {ϕi}i∈I , where Ki = supp(ϕi) is a compact subset of Ui.
Define Vi = φi(Ui) and Yi = φi(X ∩ Ki). Then Vi is an open subset of
Rn, Yi is a compact subset of Vi, and ti = (φi)∗(tϕi) ∈ D′(Vi \ Yi) is a
distribution of moderate growth along Yi. By Proposition 4.3, for each i ∈ I,
there exists a family of smooth functions {βi,λ}λ∈(0,1] ∈ C∞(Vi)

(0,1] and a
family of neighborhood Ui,λ of Yi in Vi such that

(a) (βi,λ)|Ui,λ ≡ 0, for all λ ∈ (0, 1];
(b) limλ→0 βi,λ(x) = 1, for all x ∈ Vi;

and a family of distributions {ci,λ}λ∈(0,1] ∈ D′(Vi)(0,1] with support in Yi
such that the limit

lim
λ→0

(
tiβi,λ − ci,λ

)
(4.4)

exists in D′(Vi) and defines an extension t̄i of ti. Define

βλ =
∑
i∈I

ϕi(βi,λ ◦ φi) ∈ C∞(M)
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and
cλ =

∑
i∈I

(φ−1
i )∗(ci,λ) ∈ E ′(M).

We recall that the last sum is well defined for it is locally finite and each
summand is a distribution of compact support, so it is canonically extended
by zero to a distribution of compact support in M . Moreover, the support of
cλ is included in X, for each summand satisfies that condition. Then, (iii) is
satisfied, and the theorem is proved. �

Remark 4.4. The divergences of the first term in the third member of (4.3)
come from the fact that ϕ /∈ Im+1

X (Rn). However, these divergences are local
in the sense they can be subtracted by the counterterm given by the last
term of (4.3), which becomes singular when λ → 0, and only depend on
the restriction to X of the m-jets of ϕ. Indeed, the fact that ϕ vanishes
near X implies that, if ϕ ∈ Im+1

X (Rn), then Pmϕ = 0. We remark that the
family of distributions {cλ}λ are exactly the counterterms that appear in the
renormalization procedure in QFT.

4.3. The ambiguity group

Define the ambiguity group Gm of order m ∈ N0 as the collection of linear,
continuous, bijective maps from Cm(Rn) to itself preserving Im+1

X (Rn). Note
that g ∈ Gm implies g−1 is continuous by the Open mapping theorem, so Gm
is a group. Let R be the renormalization map corresponding to a retraction
Im : Cm(Rn) → Im+1

X (Rn) of the inclusion Im+1
X (Rn) → Cm(Rn). In other

words, R is the continuous dual of Im. The group Gm naturally acts on the
space of renormalization maps. Indeed, given g ∈ Gm, t ∈ Im+1

X (Rn)′ and
ϕ ∈ Cm(Rn), define (g.R)(t)(ϕ) = R(t)(g(ϕ)) = t(Im ◦ g(ϕ)).

5. Renormalized products

5.1. Generalities

As explained in the introduction, in pQFT we need to renormalize products
of Green functions. Therefore we usually need to control the behavior of
products of distributions with smooth functions that are singular along some
closed sets.

Definition 5.1. Let Ω ⊆ Rn be an open subset. A function f ∈ C∞(Ω) is said
to be tempered if for every compact K ⊆ Rn and every m ∈ N0, there exist
C and s in R≥0 such that

sup
|α|≤m

∣∣∂αf(x)
∣∣ ≤ C(1 + d(x,Ωc)−s

)
, (5.1)

for all x ∈ K ∩Ω. The set of all tempered functions on Ω will be denoted by
M(Ω,Rn) ⊆ C∞(Ω).

Note that tempered functions form a subalgebra of C∞(Ω) by Leibniz’s
rule. It is immediate that this definition can be generalized to any open subset
Ω of a smooth manifold M
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Proposition 5.2. Let Ω ⊆ Rn be an open subset. Consider t ∈ T (Ω) and
f ∈ C∞(Ω) satisfying the following conditions:

(a) there exists (C, s1) ∈ R2
≥0 such that∣∣t(ϕ)

∣∣ ≤ C(1 + d
(

supp(ϕ),Ωc
)−s1)‖ϕ‖Km,

for all ϕ ∈ D(Ω);
(b) there exists (Cm, s2) ∈ R2

≥0 such that

sup
|α|≤m

∣∣∂αf(x)
∣∣ ≤ Cm(1 + d(x,Ωc)−s2

)
,

for all x ∈ K ∩ Ω.

Then, there is C ′ > 0 such that∣∣ft(ϕ)
∣∣ ≤ C ′(1 + d

(
supp(ϕ),Ωc

)−(s1+s2)
)
‖ϕ‖Km, (5.2)

for all ϕ ∈ D(Ω),

Proof. The claim follows from the inequalities∣∣ft(ϕ)
∣∣ ≤ C(1 + d

(
supp (ϕ),Ωc

)−s1)‖fϕ‖Km
≤ CCm2mn

(
1 + d

(
supp (ϕ), X

)−s1)(
1 + d

(
supp (ϕ),Ωc

)−s2)‖ϕ‖Km
≤ 4CCm2mn︸ ︷︷ ︸

C′

(
1 + d

(
supp (ϕ),Ωc

)−(s1+s2)
)
‖ϕ‖Km,

for all ϕ ∈ D(Ω). �

Theorem 5.3. Let M be a manifold and Ω ⊆ M be an open subset. For all
f ∈ M(Ω) and all t ∈ D′(M), there exists a distribution R(ft) ∈ D′(M)
which coincides with the regular product ft in Ω.

Proof. By a classical argument on partitions of unity (as the one used in
the proof of Theorem 4.1), we may reduce to the case where Ω is an open
subset of a relatively compact open set M ⊆ Rn. Moreover, we may even even
assume that f ∈ M(Ω) and t ∈ D′(Ω) is a distribution of compact support
included in Ω, so it canonically extends to t ∈ E ′(Rn). By Proposition 4.3, it
suffices to prove that ft has moderate growth, which is a consequence of the
previous proposition. �

Example. Our result shares some similarities with [33], Thm. 4.2 and 4.3,
pp. 83–85, where Meyer renormalizes the product of distributions Sγt at a
point x0 ∈ Rn, where Sγ(x) = fp |x − x0|γ is the Hadamard finite part of
|x − x0|γ , t is some kind of weakly homogeneous distribution of degree s at
x0 and s + γ ∈ R \ {−n − m : m ∈ N0}. He shows that the renormalized
product Sγt is locally weakly homogeneous of degree s+ γ at x0.

Proposition 4.3 gives the following direct consequence of Theorem 5.3.

Corollary 5.4. T (Ω) is a M(Ω)-module.

This was also proved by Malgrange (see [29], Prop. 1, p. 4).
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5.2. Gluing properties

The following property plays a central role in our approach to renormalization
à la Epstein–Glaser and it allows to avoid the use of partitions of unity.

Definition 5.5. Let X and Y be two closed sets of an open set U of the
Euclidean space Rn. They are said to be regularly situated (in U) if given
any x0 ∈ X ∩ Y there exist a neighborhood W of x0 and constants C > 0
and m ∈ N such that

d(x,X) + d(x, Y ) > Cd
(
x,X ∩ Y

)m
, (5.3)

for all x ∈ V .
More generally, two closed sets of a manifold M of dimension n are called

regularly situated if there is an atlas {(Ui, φi)}i∈I of M such that φi(X ∩ Ui)
and φi(Y ∩ Ui) are regularly situated in Rn, for all i ∈ I.

Finally, we will say that a finite family {Vj}j∈J of open sets of a manifold
M are regularly good if for all nonempty subsets J ′, J ′′ ⊆ J such that J ′∩J ′′ =
∅, ∂(∪j∈J′Vj)∪∂(∪j∈J′∪J′′Vj) and ∂(∪j∈J′′Vj)∪∂(∪j∈J′∪J′′Vj) are regularly
situated.

The following result is due to  Lojasiewicz in the case of bounded open
sets in the Euclidean space (see [28], Section 5, Prop. 6, p. 98).

Proposition 5.6. Let U and V be two regularly good open subsets of a manifold
M of dimension n, i.e. such that X = ∂U ∪∂(U ∪V ) and Y = ∂V ∪∂(U ∪V )
are regularly situated. Then the short sequence of vector spaces

0→ T (U ∪ V )
ι→ T (U)⊕ T (V )

p→ T (U ∩ V )→ 0

is exact, where ι(u) = (u|U , u|V ) and p(v, w) = v|U∩V − w|U∩V , for all u ∈
T (U ∪ V ), v ∈ T (U) and w ∈ T (V ).

Proof. Let (Ui, φi)i∈I be a locally finite atlas of M such that φi(X ∩ Ui) and

φi(Y ∩ Ui) are regularly situated in Rn, for all i ∈ I. By Lemma 2.1, it suffices
to show that t|Ui ∈ T ((U ∪ V ) ∩ Ui), for all i ∈ I. Hence, by replacing U by
φi(U ∩ Ui), V by φi(V ∩ Ui) and t|Ui by φ∗i (t|Ui), we might assume that U
and V are open subsets of Rn and t is a distribution on an open set of Rn
including U and V . The definition of X and Y being regularly situated is
clearly equivalent to the definition that ∂U and ∂V are regularly separated
by ∂(U ∪V ) (for the definition, see [28], Section 3, p. 91). By [28], Section 5,
Prop. 6, p. 98, t ∈ T (U ∪ V ), and the proposition follows. �

We will now recall a result showing that the regularly situated hypoth-
esis is fairly general. For the definition of semianalytic and subanalytic sets
of a real analytic manifold, we refer the reader to [3], Def. 2.1 and 3.1, resp.
We only remark that any semianalytic set is clearly subanalytic, any finite
intersection and finite union of a subanalytic sets is again subanalytic, as well
as the complement and the closure of any subanalytic set.

The local version of the next result, where M is an open subset of Rn,
can be found in [3], Cor. 6.7. The general version follows from observing that
Definition 5.5 is of local nature.
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Proposition 5.7. Let M be an analytic manifold, and let X and Y be two
closed subanalytic subsets of M . Then, X and Y are regularly situated.

6. Renormalization of Feynman amplitudes in Euclidean
quantum field theories : the proof of Theorem 1.5

6.1. Feynman amplitudes are tempered

We will give in this section the main application of our extension techniques:
the proof of Theorem 1.5. Our approach to renormalization follows the phi-
losophy of R. Brunetti and K. Fredenhagen in [4–6], and Nikolov, Stora and
Todorov in [36], which goes back to the articles [14,15]. It is essentially based
on the concept of extension of distributions. However, we will use the nice
formalism of renormalization maps of Nikolov (see [36,37]) which is closest in
spirit to the present paper. In what follows, we will always assume that (M, g)
is a smooth d-dimensional Riemannian manifold with Riemannian metric g.
We denote by ∆g the Laplace–Beltrami operator corresponding to g, and we
consider the Green function G ∈ D′(M ×M) of the operator ∆g + m2, for
m ∈ R≥0. G is the Schwartz kernel of the operator inverse of ∆g+m2 (see [43],
Appendix 1), which always exists when M is compact and m2 /∈ Spec(∆g).
In the noncompact case, the existence and uniqueness for the Green function
usually depends on the global properties of ∆g and (M, g). For instance, if
(M, g) has bounded geometry in the sense of [8], p. 33, and [41] (see also [43],
Def. 1.1, Appendix 1, and [42], Def 1.1, p. 3), then under some conditions
of spectral theoretic nature on ∆g + m2 (see [43], Appendix 1), the opera-

tor inverse
(
∆g +m2

)−1
: Lp(M) → Lp(M) exists for p ∈ (1,+∞), and its

Schwartz kernel is G.
In any case, assuming that G exists, we have the following well-known

result about the asymptotics of G near the diagonal.

Lemma 6.1. Let (M, g) be a smooth Riemannian manifold and ∆g the corre-
sponding Laplace operator. If G ∈ D′(M ×M) is the fundamental solution of
∆g + m2, then G is tempered in M2 \D2, where D2 ⊆ M ×M denotes the
diagonal.

Proof. This follows from the estimate in [45], Prop. 2.2, (2.5), applied to the
Green function G, which is the Schwartz kernel of an elliptic pseudodiffer-
ential operator of degree −2, for G is a parametrix of the Laplace–Beltrami
operator ∆g +m2. �

6.2. Basic definitions on configuration spaces

We recall that for every finite subset I ⊆ N and any open subset U ⊆M , we
define the configuration space U I = {(xi)i∈I |xi ∈ U,∀i ∈ I} of |I| particles
in U labeled by the subset I ⊆ N. In the sequel, we will distinguish two types
of diagonals in U I : the big diagonal DI = {(xi)i∈I |∃(i 6= j) ∈ I2, xi = xj},
which represents configurations where at least two particles collide, and the
small diagonal dI = {(xi)i∈I |∀(i, j) ∈ I2, xi = xj}, where all particles
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in U I collapse over the same element. For every pair of elements i, j ∈ I
such that i 6= j, set dI{i,j} to be the subset {xi = xj} of the configuration

space M I . For simplicity, the configuration space M{1,...,n} and the corre-
sponding big and small diagonals D{1,...,n} and d{1,...,n}, as well as the set

d
{1,...,n}
{i,j} will be denoted by Mn, Dn, dn, and dn{i,j}, respectively. For any

finite subset I ⊆ N, a Feynman amplitude will denote any element of the
form

∏
(i<j)∈I2 G(xi, xj)

nij ∈ C∞(M I \DI), nij ∈ N0.

6.3. The vector subspace O(DI , .) generated by Feynman amplitudes

As explained in Subsubsection 1.1.2, in QFT, the extension of Feynman am-
plitudes to the whole configuration space should satisfy some consistency
conditions in order to be compatible with the fundamental requirement of
locality.

Recall that for any open subset Ω ⊆ M I , we denote by M(Ω \ DI)
the algebra of tempered functions in Ω \DI . We introduce the vector space
O(DI ,Ω) ⊆ C∞(Ω \DI) generated by the Feynman amplitudes, i.e.

O(DI ,Ω) =

〈{ ∏
i<j∈I2

G(xi, xj)
nij |nij ∈ N0

}〉
. (6.1)

By Lemma 6.1, O(DI ,Ω) ⊆M(Ω \DI).

6.4. Axioms for renormalization maps: factorization property as a conse-
quence of locality

We will now present a slightly different but equivalent form of the notion of
renormalization maps given in Definition 1.3, (i) and (ii). We remark that
these axioms are simplified versions of those appearing in [36], Section 5,
pp. 33–35.

Definition 6.2. A collection of linear maps {RΩ⊆MI}Ω,I : O(DI ,Ω)→ D′(Ω),
where I runs over the finite subsets of N and Ω runs over the open subsets
of M I , is called a renormalization scheme if the following conditions are
satisfied.

(i) For any finite set I ⊆ N and any open set Ω ⊆M I , RΩ⊆MI (t)|DI∩Ω = t,
for all t ∈ O(DI ,Ω);

(ii) For every pair of open subsets Ω1 ⊆ Ω2 ⊆M I , we require that〈
RΩ2⊆MI (f), ϕ

〉
=
〈
RΩ1⊆MI (f), ϕ

〉
,

for all f ∈ O(DI ,Ω2) and ϕ ∈ D(Ω1);
(iii) The renormalization maps satisfy the factorization property, given as

follows. If U and V are disjoint open subsets of M , and I and J are
disjoint finite subsets of N, then

R(UI×V J )⊆MI∪J (f � g) = RUI⊆MI (f)︸ ︷︷ ︸
∈D′(UI )

�RV J⊆MJ (g)︸ ︷︷ ︸
∈D′(V J )

∈ D′(UI × V J),

for all (f, g) ∈ O(DI , U
I)×O(DJ , V

J).
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The most important property is the factorization property (iii), which
is imposed in [36], Equation (2.2), p. 5. We recall that, as usual, the renor-
malization map RΩ⊆MI with Ω = M I is typically denoted just by RMI .

6.5. The main idea on how to define Renormalization maps

In order to define R on M I , for every Feynman amplitude t ∈ O(DI ,M
I), it

suffices to define RΩi⊆MI for a finite open cover {Ωi}i of M I \DI satisfying
that the open sets {Ωi}i are regularly situated and such the maps RΩi⊆MI

coincide on the overlaps Ωi∩Ωj and each RΩi⊆MI (t) has moderate growth in
T (Ωi). Indeed, by the gluing property for distributions with moderate growth
given in Proposition 5.6, the various sections {RΩi⊆MI (t)}i glue together to

define an element RMI\DI (t) ∈ T (M I \DI).

6.6. Covering lemma

We now state a key result in the sequel. Its first part is due to G. Popineau
and R. Stora (see [36], Lemma 2.2, p. 6, and also [39,44]).

Lemma 6.3. Let M be a smooth manifold of dimension d. For any nonempty
subset I ( {1, . . . , n}, let CI = {(x1, . . . , xn)|∀i ∈ I, ∀j /∈ I, xi 6= xj} ⊆ Mn.
Note that CI is the complement of ∪i∈I,j /∈Idn{i,j} in Mn. Then,⋃

I

CI = Mn \ dn, (6.2)

where I runs over all nonempty strict subsets of {1, . . . , n}. Moreover, the
family {CI}I is regularly good.

Proof. Note first that, if (x1, . . . , xn) /∈ dn, then at least two points xi and
xj differ for (i, j) ∈ {1, . . . , n}2. In consequence, (x1, . . . , xn) ∈ CI , for I =
{j ∈ {1, . . . , n} : xj = xi}, which in turn implies that (6.2) holds.

We will now prove that the finite collection of open subsets {CI}I
is regularly good, i.e. given {Ij′ : j ∈ J ′} and {Ij′′ : j ∈ J ′′} be two
nonempty and disjoint families of nonempty strict subsets of {1, . . . , n}, X =
∂(∪j′∈J′CIj′ ) ∪ ∂(∪j∈J′∪J′′CIj ) and Y = ∂(∪j′′∈J′′CIj′′ ) ∪ ∂(∪j∈J′∪J′′CIj )
are regularly situated. By [18], Prop 8, the smooth manifold M admits a
compatible analytic structure, which then induces an analytic structure on
the cartesian power Mn of M . Furthermore, any diagonal dn{i,j} inside Mn is

a closed real analytic subset, which in turn implies that CI is a semianalytic
set of Mn, so a fortiori subanalytic. By the preservation of the subanalyticity
property under finite unions, finite intersections, complements and closures,
we conclude that X and Y are also subanalytic, so regularly situated, by
Proposition 5.7. The statement is thus proved. �

6.7. Recursive property of the renormalization maps

The following result is proved in [36], Lemmas 2.2 and 2.3, p. 6.
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If t =
∏

16i<j6nG(xi, xj)
nij is a Feynman amplitude and I ( {1, . . . , n}

is a nonempty subset, we introduce the following elements

tI =
∏

i, j ∈ I
i < j

G(xi, xj)
nij , tIc

∏
i, j ∈ Ic
i < j

G(xi, xj)
nij ,

tI,Ic =
∏

(i,j)∈I×Ic
G(xi, xj)

nij .

(6.3)

Lemma 6.4. Let n ∈ N and let {RΩ⊆MI}Ω,I be a collection of renormalization
maps defined for all I ⊆ N such that |I| < n and satisfying the axioms of
Definition 6.2. Consider the open cover {CI}I defined in Lemma 6.3 and a
Feynman amplitude t =

∏
16i<j6nG(xi, xj)

nij . Then, given two nonempty

subsets I, J ( {1, . . . , n}, we have the identity

RMI (tI)RMIc (tIc)tI,Ic |CI∩CJ = RMJ (tJ)RMJc (tJc)tJ,Jc |CI∩CJ (6.4)

on the open set CI ∩ CJ , which in turn implies that

RCI⊆Mn\dn |CI∩CJ = RCJ⊆Mn\dn |CI∩CJ . (6.5)

As a consequence, the renormalization map RMn\dn⊆Mn exists and it is
uniquely determined by the renormalizations maps RMI for all |I| < n.

Proof. See [36], pp. 6–7, for a detailed proof. �

The previous result clearly generalizes to any subset L of N having n
elements, but we have stated it for the case L = {1, . . . , n} for simplicity.
Note also that the above Lemma does not ascertain the existence of the
renormalization map RMn .

6.8. The existence theorem for renormalization maps : the proof of Theorem
1.5

We finally provide the following short proof of the existence of renormaliza-
tion maps on general closed Riemannian manifolds.

Theorem 6.5. Let (M, g) be a closed Riemannian manifold, ∆g be the corre-
sponding Laplace operator, and G be the Green function of ∆g + m2, where
m > 0. We recall that for any configuration space M I , where I is a finite sub-
set of N, and any open subset Ω ⊆ M I , O(DI ,Ω) ⊆ M(DI ,Ω) is the vector
space generated by the Feynman amplitudes

∏
(i<j)∈I2 G(xi, xj)

nij , nij ∈ N0.

Then, there exists a collection of renormalization maps {RΩ⊆MI}Ω,I ,
where I runs over the finite subsets of N and Ω runs over the open subsets of
M I which satisfies the three axioms of Definition 6.2. They can even be con-
structed so that they satisfy the restricted version of the covariance condition
(iii) in Subsubsection 1.1.2.

Proof. We proceed by induction on the number n ∈ N of elements of the
configuration space. Now assume that all renormalization maps {RΩ⊆MI}Ω,I
for |I| 6 n− 1 are constructed and satisfy the list of axioms of definition 6.2,
as well as the restricted version of the covariance condition. It suffices to show
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that RΩ⊆MI exists for all finite subsets I ⊆ N satisfying that |I| = n and all

open subsets Ω ⊆ M I , and it fulfills the restricted version of the covariance
condition. By Definition 6.2, (ii), it suffices to prove the previous statement
for RMI and all finite subsets I ⊆ N satisfying that |I| = n. For simplicity,
we will only deal with the case RMn , but the same argument holds in general.

For n = 2, the renormalization map RM2 : O
(
D2,M

2
)
→ D′(M2)

exists since propagators are tempered along diagonals by Lemma 6.1 and
their powers can be renormalized by Theorem 5.3. For n > 2 and any generic
Feynman amplitude t =

∏
1≤i<j≤nG(xi, xj)

nij ∈ O(Dn,M
n), Lemmas 6.3

and 6.4 tell us that RMn\dn(
∏

1≤i<j≤nG(xi, xj)
nij ) exists and it is unique.

Recall that we can write

RCI (t) = RMI (tI)︸ ︷︷ ︸
∈D′(MI)

RMIc (tIc)︸ ︷︷ ︸
∈D′(MIc )

tI,Ic︸︷︷︸
∈M(∂CI ,Mn)

, (6.6)

where we use the notation of (6.3). The product RMI (tI)RMIc (tIc) belongs
to D′(Mn) and the product tI,Ic =

∏
(i,j)∈I×Ic G

nij (xi, xj) is tempered in

CI . It follows from Theorem 5.3 that the distribution

RCI
( ∏

1≤i<j≤n

G(xi, xj)
nij

)
=

∏
(i,j)∈I×Ic

G(xi, xj)
nij

︸ ︷︷ ︸
∈M(∂CI ,Mn)

RMI (GI)RMIc (GIc)︸ ︷︷ ︸
∈D′(Mn)

inD′(CI) has moderate growth in CI , so for every CI ,RMn\dn(t)|CI ∈ T (CI).
Since the open sets CI are regularly good by Lemma 6.4, Proposition 5.6 tells
us that RMn\dn(t) ∈ T (∪CI) = T (Mn \ dn), so RMn\dn(t) is extendible.
Note that, for n = 2, RMn\dn clearly satisfies the restricted version of the
covariance axiom, for the Feynman amplitudes clearly do. Moreover, for n >
2, the inductive hypothesis and the explicit expression (6.6) of RMn\dn in
terms of the renormalization maps {RΩ⊆MI}Ω,I for |I| 6 n − 1 imply that
RMn\dn also satisfies the restricted version of the covariance axiom.

We now set RMn(t) to be any extension of RMn\dn(t) that is equi-
variant with respect to the action of the group of isometries of (M, g). In-
deed, since the isometry group Iso(M, g) of any closed Riemannian manifold
is compact (Iso(M, g) is a Lie group by [35], Thm. 9, whereas the Arzelà-
Ascoli theorem shows that it is compact if M is so), Remark 4.2 tells us

that RMn(t) = PIso(M,g)
Mn\dn (RMn\dn(t)) does the job. Alternatively, the exis-

tence of such RMn(t) also follows from Proposition 2.8. In any case, since the
extension RMnt of RMn\dnt is compatible with the action of the group of
isometries of (M, g), the former also satisfies the restricted version of the co-
variance axiom, as explained in Remark 1.4. The theorem is thus proved. �

An important remark is that the sequence of renormalization maps con-
structed in the above proof is not unique and has infinitely many degrees of
freedom at each step of the induction since we can choose many possible ex-
tensions for the distribution RMn\dn(

∏
1≤i<j≤nG(xi, xj)

nij ) and these are
precisely controlled by the ambiguity group considered in Subsection 4.3.
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Moreover, they are related to the renormalization ambiguities which are en-
countered in renormalization of pQFT on curved spacetimes.
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[17] José M. Gracia-Bond́ıa, Improved Epstein-Glaser renormalization in coordinate space.
I. Euclidean framework, Math. Phys. Anal. Geom. 6 (2003), no. 1, 59–88. ↑1

[18] Hans Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann.

of Math. (2) 68 (1958), 460–472. ↑6.6



28 REFERENCES

[19] Stefan Hollands and Robert M. Wald, Local Wick polynomials and time ordered prod-

ucts of quantum fields in curved spacetime, Comm. Math. Phys. 223 (2001), no. 2,

289–326. ↑1, 1.1.4
[20] , Existence of local covariant time ordered products of quantum field in curved

spacetime, Comm. Math. Phys. 231 (2002), no. 2, 309–345. ↑1, 1.1.4
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